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Abstract

An alternative approach to predicting alkane solubilities in hydrofluorocarbons using artificial neural networks is described. The networks
are trained with a minimum set of compounds above and below a set solubility limit. Each potential solvent is given descriptors, such as the
number of atoms or their ratios as deduced from the structural formula. Further descriptors, one summing the number of adjacent dipoles of
opposite polarity and another ratioing hydrocarbon content of solvent relative to solute, are also needed. The differentiation of solvents from
non-solvents is better than that found previously with a predominant area diagram drawn on polar and non-polar contributing axes. The
smallest networks provide inequalities which are linear in the descriptors and become greater or lesser than zero for non-solvents and solvents,
respectively. The order of solubility is predictable from the inequalities,
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1. Introduction

Itis difficult to predict the properties of hydrofluorocarbons
(HFCs) from those of the corresponding hydrocarbons
(HCs) and perfluorocarbons (FCs). Thus the boiling points
of two-carbon compounds do not increase monotonically
with molecular mass. Instead they rise from minima at C,H,
and C,F¢ to maxima at CH,FCH,F and CHF,CH,F with
intermediate values around CH,CF,; [ 1]. Hence HFCs cannot
be modelled in the same manner as HCs or FCs because HECs
are polar. They combine opposite polarities (H—C—F)
unlike HCs or FCs which are non-polar overall.

HFCs have been proposed for replacing chlorinated sol-
vents for cleaning or degreasing. Van Der Puy and coworkers
have attempted to estimate the solubilities of HCs in possible
replacement solvents [2]. The HFCs were modelled with a
solubility parameter SP given by Eq. (1), i.e.

SP=1.175 In(np) + [0.025H — 0.063F
—0.028a—0.0183] (1)

where the non-polar (np) term was equal to R./V,~'/*
{where R, is the molar refractivity and V_, the molar volume,
both of which can be summed from group contributions).
This term can be identified with the London dispersion forces
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in the liquid and had previously been related linearly to the
boiling points of HCs and FCs as far as the octanes [3].
(However the relationship overestimates the boiling points
increasingly as the chain lengthens. For C,(H;, the estimate
is 594.5 K compared with the actual value of 560 K and for
C,¢Fs4 the estimate is 567.0 K compared with 512.2 K.) The
rest of the terms sum to a much smaller polar contribution.
The number of hydrogens ( H) and fluorines ( F) can be taken
to represent C—H and C—F dipoles and « and f3 their adja-
cency in H—C—F and H—C—C—F, respectively. Thus the
evaluation of the five constants required at least five known
solubilities, and to be realistic at least 10 to allow partial
optimization. By plotting the polar versus the non-polar
terms, Van Der Puy and coworkers produced a predominant
area diagram for a particular alkane (C,4H,,) where the
solubility was taken as >10% by volume. (In their
Table 1 solubilities were expressed as solute/solution vol-
umes as opposed to solute/solvent ones in their Fig. 1. Con-
version using fractional volumes may be achieved using
[{e/{V+v)} '=1] '=0v/V, where v and V are the solute
and solvent volumes, respectively.) Solvents were separated
from non-solvents, albeit with about six of them on, or close
to, the boundary line. For convenience, the diagram is repro-
duced as Fig. 1 with the compounds numbered (see Appendix
1 for the formulae). Corrections are also indicated as crosses
(x) where the B terms were underestimated. The additional
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Fig. 1. Solvents (O) and non-solvents ([J) for hexadecane with corrected
values (x). Terms are given in Eq. (1) and formulae are listed in
Appendix 1.

B terms are those bracketed after the following numbered
compounds: 15(4); 17(1); 21(2); 25(4); 26(4); 30(4);
and 33(2).

2. Application of neural networks

The classification of HFCs is essentially a pattern recog-
nition problem which can be treated by such methods as
principal, or discriminant, component analysis [4] without
having to postulate any mechanism for solubility at the
molecular level. The method followed here uses artificial
neural networks (NNs) [5] which input numerical descrip-
tors for each compound and transform them via intermediate
layers to outputs set at 1 and O for solvents and non-solvents,
respectively. The connections ( synapses) between inputs and
each member (neuron) of the intermediate (hidden) layer
are weighted and then summed at that neuron. The sums
are scaled between 0 and 1 with a sigmoidal function
[1/(1+e™*)]. Each column of descriptors for the set of
compounds is also scaled, usually relative to the highest value
as unity. The hidden neurons are fully connected to one or
more outputs in similar fashion. The network is trained with
known solvents and non-solvents to give unit and zero outputs
by systematically adjusting weights and biases in a back-
propagation mode. This collection of weights and biases ena-
bles other HFCs to be classified rapidly as solvents or
non-solvents, under the conditions pertaining to the training
set, by a forward propagation.

A relevantapplication of NNs was in the prediction of CFC
and halomethane boiling points from their structural formulae
[6]. The number of carbons and number of each halogen
were input as descriptors together with some topological indi-
ces expressing molecular shape in numerical form. For exam-
ple the simplest such index due 10 Wiener [ 7] is half the sum
of the interatomic distances in the molecular graph. Because

both boiling points and solubilities depend on intermolecular
forces, it seemed reasonable to first input C, H, F, H/F and
C/F counts as descriptors. However topological descriptors
were omitted because FC and HFC boiling points (in °C) are
barely structure-dependent as amply illustrated by the values
provided by Van Der Puy et al. [ 2]: Et,'Pr, 36-37; ‘Pr;Et, 37—
39: EtBu, 61-62; 'PrPr, 62; Pr/Pr, 59-61: Bu,Pr, 86-88;
Bu,Pr, 87.

Initially, the choice of training set, guided by the distri-
bution shown in Fig. 1, avoided compounds near the bound-
ary line. Compounds 1-6 and 8 were trained to unit output
and 26, 29, 30, 32, 33 and 34 to zero using H, C, F, H/F and
C/F numbers as descriptors in a 5-3—1 network, where -3
is a three-neuron hidden layer. Five of the remaining 23
compounds were wrongly predicted. Hence an additional
descriptor was introduced to improve prediction, namely the
aforementioned « and § factors which allowed for polarity.
They were assumed to be of equal importance, and since there
was no priori reason to favour either, were inputted as simple
sums. They compactly store structural information such as
could be provided at greater length by listing all CH,F,,
groups with » and m ranging from 1 to 3. They also serve to
indicate group position. For example, CF,CF,CH(CH,;),
gives a 23 value while the isomer F,CHCF,CF(CH,), gives
a2a+ 64 sum. The new 6-3—1 network only left compound
25 (FCH,CH,F) as the outstanding exception, classifying it
clearly as a solvent. (Compound 13 also became a marginal
non-solvent.} Although 25 is the only possible two-carbon
HFC suitable for a cleaning solvent — all others boil below
room temperature — another descriptor was devised to
remove the anomaly because it would also be applicable when
shorter chain alkanes were considered as solutes. Arguing
that ‘like dissolves like’, the HC content of a potential solvent
relative to a solute, expressed as the ratio R of the number of
carbons, would be low for non-solvents and higher for sol-
vents. This ratio was down-weighted for molecules with non-
adjacent CH,, groups because the ‘clustered’ compounds R;R
have been shown to be better solvents than their mixed iso-
mers. The down-weighting factor was varied and a value of
0.75 was found to be satisfactory. Rather than expand to a 7—-
3-1 network, it was possible to omit H and C/F as redundant
information and return to a 5-3-1 network with the original
training set. This led to an all-correct prediction of solubility
as judged by a boundary at greater than 0.5. Contracting the
hidden layer to give a 5-2-1 architecture gave as good a
partition.

However, because no further improvement (i.e. moving
all outputs closer to 1 or 0) was possible at this stage, the
training set was re-examined. In Fig, 1 there is a poor corre-
spondence between a molecule’s position and solubility,
especially near the boundary line. After several trials, the
final choice for the solvent set was the most soluble com-
pounds 2 and 5 and the reasonably soluble compounds 13
and 16, although these were close to the line. For the non-
solvent set, all the zero polarity FCs were excluded, as well
as the monohydrogen HFC 33, as obvious non-solvents.
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Instead, compounds 19, 21, 23, 25 and 29 were taken. Com-
pound 25, F(CH,),F, was trained as a non-solvent because
it was a good test for predicting that F(CH,) ;F, with an extra
CH, group, would be a solvent. In all, a quarter of the com-
pounds constituted the training set.

The neurons in the hidden layer were systematically varied
and the descriptors reduced to H, C and F numbers together
with (a+ B) and R values. The resulting 5-1-1 network,
using the above training set, was compared with the 7-1-1
network which included the C/F and H/F descriptors
(Appendix 2). The solvency of the remaining 28 compounds
was correctly predicted with all outputs within 0.02 of the
required unit or zero values. As the hidden layer has been
reduced to one neuron, these networks can be expressed as
linear inequalities. For example, with the 5-1-1 network

9.99F/20—-7.40H/20+3.25C/104+9.42(a+ 8)/20
—9.60R/0.25-0.6620 ()

where the numerator constants arc the weights connecting
the inputs to the hidden neuron, and the last constant is the
bias weight. The denominators are the maximum descriplor
values used to normalize the column values listed in Appen-
dix 2. Inequalities of this type are not unique but will vary
with the choice of training set. Overall they should all produce
the same sequence of solvency.
For the 7--1-1 network, inequality (2) 1s:

9.65F/20—T.13H/10+2.48C/20~ (1.54C/F)/2
—(2.25H/F)3+9.46(a+ 3)/20—10.36R/0.25
+0720 (3)

Interestingly the available experimental solubility values {2}
parallel the inequality values (Tablc 1). There is at least a

Table |
Comparison of experimental with predicted order of solubilitics in hydro-
fluorocarbons

Solubility Compound * Predicted order
(solute/solvent) of solubility from
by volume [2] 5~1-1 network
Miscible " 1 |
176° 4 4
64" 3 3
Miscible 2,57, 10 S
2
7
10
493 11 11
25.0 15 15
124 13 14
99 12, 14 13

12

* No values were reported for 6, 8 and 9 and these have not been included
in the predicted order.

" These values were for a mineral oil as the solute with a longer chain
hydrocarbon than hexadecane.

¢ Obtained from the inequality values listed in Table 2.

semi-quantitative relation quite unlike that which could be
anticipated from Fig. 1.

3. Conclusions

The advantage of the NN approach is the ease with which
networks can be retrained for different conditions. Thus dif-
ferent solubility limits could be chosen or the alkane solute
changed, provided appropriate training sets were employed.
It also seems possible to make quantitative solubility predic-
tions if sufficient solubility data exist; perhaps with a more
extended network. All the descriptors were derivable from
the structural formulae without recourse to experimental data
or preconceived notions of mechanism.

Appendix 1
List of FCs and HFCs used in Fig. 1 and in neural networks
I. Et4Bu 20. OCfoEf
2. (EtC,F,4)»CF, 21. H(CF,)4Me
3.isoPr¢isoPr 22. CF3CH,CF, Me
4. EtyisoPr 23. CF3(CH,),CF3
F
5 PryisoPr 24 F rC:F3
CF3
6. Me(CF,),Et 25. F(CH,),F
7. Pr, Pr 26. H(CF,)H
8.Bu;isoPr 27 F
e - CF3
9. BusPr 28 CF3
CFx
10.isoPrEt 29. CF3CH,CH(CF3),
Il Pr,Et 30. HCF,CFHCF,H
12.MeCF, CH,CF,Me 3. CsFpp
13. Pry Et 32. CF3CH,CF,CH,CFy
F
F
14. - 33. CF43(CF,)gH
F
5. F(CH,)5F 34. CeF
16. CF5CH(Me) CH ,CFy 35. CgF g
H
F
7. Pr; CH,CHF Me 36. cis F H
F
iI8.Me (CF,)3Me 38. cis

MmMIMI

19. Hexyl Et
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Table 2
Final neural networks used to differentiate solvents from non-solvents

Compound Descriptor inputs Taught Network output Values of inequalities
No. to value
F H C C/F H/F a+f3 R 7-1-1 5-1-1 Eq. (2) Eq. (3)
1 5 9 6 1.20 1.80 4 0.250 1.00 1.00 —1241 —10.46
2 10 10 9 0.90 1.00 8 0.250 1 1.00 1.00 —-17.27 —5.83
3 7 7 6 0.86 1.00 1 0.188 1.00 1.00 —8.04 —7.03
4 5 7 S 1.00 1.40 2 0.188 1.00 1.00 -9.19 —7.89
5 7 7 6 0.86 1.00 2 0.188 1 1.00 1.00 —17.57 —6.56
6 4 8 S 1.25 2.00 10 0.125 1.00 1.00 —4.67 —-298
7 7 7 6 0.86 1.00 4 0.188 1.00 1.00 —6.63 —5.62
8 9 7 7 0.78 0.78 2 0.188 1.00 1.00 —6.14 —523
9 9 7 7 0.78 0.78 4 0.188 1.00 1.00 —-5.20 —4.29
10 7 5 5 0.71 0.71 2 0.125 1.00 1.00 —3.49 -3.02
11 7 5 5 0.71 0.71 4 0.125 1.00 1.00 —2.55 —2.08
12 4 8 5 1.25 2.00 20 0.188 0.99 0.96 —2.56 —0.67
13 9 5 6 0.67 0.56 4 0.125 1 098 0.98 —-1.20 —-0.75
14 4 4 4 1.00 1.00 8 0.125 0.99 098 -2.09 —-1.29
15 2 6 3 1.50 3.00 8 0.063 1.00 0.99 —4.05 —-1.74
16 6 6 5 0.83 1.00 9 0.188 1 1.00 1.00 —4.28 —3.36
17 8 6 6 0.75 0.75 10 0.094 0.00 0.00 1.50 2.01
18 6 6 S 0.83 1.00 12 0.094 0.01 0.01 0.98 1.62
19 13 5 8 0.62 0.38 4 0.125 0 0.02 0.02 1.40 191
20 17 S 10 0.59 0.30 4 0.125 0.00 0.00 3.90 4.57
21 8 4 S 0.63 0.50 10 0.063 0 0.00 0.00 422 4.34
22 5 5 4 0.80 1.00 16 0.094 0.00 0.00 2.87 341
23 6 4 4 0.67 0.67 12 0.125 0 0.00 0.01 1.25 1.59
24 12 0 6 0.50 0.00 0 0.000 0.00 0.00 7.59 732
25 2 4 2 1.00 2.00 8 0.000 0 0.00 0.00 0.83 1.80
26 9 3 5 0.56 0.33 10 0.000 0.00 0.00 8.17 797
27 14 0 7 0.50 0.00 0 0.000 0.00 0.00 8.80 8.65
28 16 0 8 0.50 0.00 0 0.000 0.00 0.00 10.01 9.98
29 9 3 5 0.56 0.33 12 0.063 0 0.00 0.00 6.53 6.52
30 5 3 3 0.60 0.60 10 0.000 0.00 0.00 552 5.31
31 12 0 5 0.42 0.00 0 0.000 0.00 0.00 7.40 6.99
32 8 4 5 0.63 0.50 20 0.094 0.00 0.00 7.65 7.86
33 13 t 6 0.46 0.08 4 0.000 0.00 0.00 9.21 8.96
34 14 0 6 043 0.00 0 0.000 0.00 0.00 8.60 8.32
35 18 0 8 0.44 0.00 0 0.000 0.00 0.00 11.01 10.98
36 6 2 4 0.67 0.33 4 0.000 0.00 0.00 429 4.06
38 8 2 5 0.63 025 4 0.000 0.00 0.00 5.59 539
Appendix 2 References

The neural networks were investigated using Neural Desk
neural software supplied by Neural Computer Science
(Southampton, UK) run on a486 DX processor. The learning
time was <1 min for ca. 1500 epochs converging with an
average error of 0.01.

Table 2 lists details of the final neural network inputs and
outputs.
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